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Systems of Paraconsistent Logic

G. Priest and R. Routley

1. Paraconsistency: characterization and motivation

Let = be a relation of logical consequence. = may be defined either
semantically (2 A holds iff for some specified set of valuations, whenever
all the formulas in X are true under an evaluation, so is A) or proof
theoretically (2= A holds iff for some specified set of rules, there is a
derivation of A, all of whose (undischarged) premisses are in X}, or in some
other way. = is explosive iff for all A and B, {A, ~A}=B. It is paraconsistent
iff it is not explosive. A logic is paraconsistent iff its logical consequence
relation is. If a logic is defined in terms of a set of theses it may have more
than one associated consequence relation. For example, {A, ... A,}=B iff
H(AjA...AA)>BorA; > (...>(A,>B)...) or A,,...,A,~>B (the last
representing the theorem-preserving or weak inferential connection). In this
case all its associated consequence relations should be paraconsistent.

Let X be a set of statements. X is inconsistent iff, for some A, {A, ~A}< 3.
2 is trivial iff for all B, B € . The important fact about paraconsistent logics
is that they provide the basis for inconsistent but non-trivial theories. In
other words, there are sets of statements closed under logical consequence
which are inconsistent but non-trivial. This fact is sometimes taken as an
alternative definition of ‘paraconsistent’ and, given that logical consequence
is transitive, it is equivalent to the original definition. The proof is this: If
2 is an inconsistent but non-trivial theory then obviously the consequence
relation is paraconsistent. Conversely, suppose that {A, ~A}# B. Let X be
the transitive closure of {A, ~A} under logical consequence. Then = is
inconsistent but B¢£ 2. Because of the equivalence we also call any incon-
sistent but non-trivial theory paraconsistent, and derivatively, any position
whose deductive closure provides a paraconsistent theory.

Why should one be interested in paraconsistent logics? Among the many
reasons are proof theoretic and semantic ones.

1.1. The proof theoretic reason

The proof theoretic reason is that there are interesting theories T which are
inconsistent but non-trivial. Clearly the underlying logic of such theories
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must be paraconsistent—hence the need to study paraconsistent logics.
Examples of inconsistent but non-trivial theories are easy to produce, and
many will be given in what follows. A first example, that will recur again
and again, is naive set theory, the theory of sets based on the full abstraction
axiom scheme, JyVx(x € y< A). This, together with extensionality, charac-
terizes the intuitive conception of set. The theory is inconsistent since it
generates the set theoretic paradoxes (e.g. where R is the Russell set, defined
as {x: ~x e x}, standard paradox arguments show that Re R and ~ReR).
Yet it is non-trivial because there are many claims about sets which the
intuitive notion rightly rejects (e.g. that {A} e A, where A is the null set). A
very similar, and likewise important example, is naive semantics, the truth
theory based on the full T-scheme, Tr—A—1<>A. This characterizes the
intuitive conception of truth. It is inconsistent because it generates the
semantic paradoxes (e.g., Liar paradoxes). Yet it is non-trivial since there
are many claims concerning truth which the naive notion rightly rejects
(e.g. that TrrAv B Tr—A-1 A Tr—B-).

Another group of examples of inconsistent but non-trivial theories derive
from the history of science. Consider, for example, the Newton-Leibniz
versions of the calculus. Let us concentrate on the Leibniz version. This
was inconsistent since it required division by infinitesimals. Hence if « is
any infinitesimal, a # 0. Yet it also required that infinitesimals and their
products be neglected in the final value of the derivative. Thus a =0. (As
much was pointed out by Berkeley in his critique of the calculus.') Despite
this the calculus was certainly non-trivial. None of Newton, Leibniz, the
Bernoullis, Euler, and so on, would have accepted that j'(l, xdx = A very
different but most interesting example of an inconsistent but non-trivial
theory in the history of the natural sciences is the Bohr theory of the atom.?
According to this an electron could orbit the nucleus of an atom without
radiating energy. However, according to Maxwell’s equations which formed
an integral part of Bohr’s account of the behaviour of the atom, an accelerat-
ing electron,’such as an electron in orbit, must radiate energy. Despite this
the Bohr theory of the atom was non-trivial. Someone who suggested to
Bohr that it followed from his theory that electrons moved in squares would,
rightly, have received a sharp answer. Many other examples of inconsistent
but non-trivial theories from the history of science could be given.’ Indeed
it could be persuasively argued that the whole state of scientific knowledge
at any time is such a theory.* However these two examples w111 suffice for
present illustrative purposes.

A third group of examples of inconsistent but non-trivial theorles com-
prises certain bodies of information which are theories only in a somewhat
attenuated sense. What justifies their inclusion in the present setting is that
inferences are made, and made commonly, from the information. Thus
ideally they may be conceived of as deductively closed corpuses or theories.
Many examples could be given here, and will be introduced subsequently.’
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Among the more interesting non-philosophical examples are certain bodies
~ of law, such as bills of rights and constitutions. The following is a convenient
hypothetical example which, however, makes the point clearly. The constitu-
tion of a certain country contains the clauses (a) ‘No person of the female
sex shall have the right to vote’, (b) ‘All property holders shall have the
right to vote’. We may also suppose that it is part of the common law that
women may not legally be property holders. As enlightenment creeps over
the country this part of common law is changed to allow women to hold
property. Inevitably, eventually, a woman, call her Jan, turns up at a polling
booth claiming the right to vote. A test case ensues. Patently the law is
inconsistent. According to the law Jan both does and does not have the
right to vote. Patently, also the law is not trivial. Someone who argued that
her cat should be allowed to vote on the basis of (a) and (b) would not get
very far. Actual historical examples of inconsistent legal situations are of
course more complex and, therefore, more controversial. However two
.actual examples are the case of Riggs v Palmer and Lincoln’s Proclamation
of Emancipation. In the former the clear legal right of inheritance was
contradicted by the legal principle that no one shall acquire property by
crime. The benefactor had, in fact, murdered the deceased. In the second,
the freeing of slaves, who were undoubtedly legal property, with no com-
pensation, contradicted the Fifth Amendment, which says that property
shall not be taken without just compensation.®

Other examples of inconsistent information from which inferences are
drawn include: the data presented to a jury in a trial; the information fed
into a computer; a person’s set of beliefs.” In each of these cases the
information may obviously be inconsistent. Moreover, inferences are
obviously made from this information. Yet clearly people are nog at liberty
to conclude anything they like from the information. That theré are incon- .
sistent but non-trivial theories is thus well established.

1.2. The semantical reason

A second reason for being interested in paraconsistent logics is the fact that
there are true contradictions, that is, there are statements A and ~A such
that both are true. Because of this, some inferences of the form A, ~A/B
must fail to be truth-preserving (let alone valid) since some statements (take
one such for B) are not true. Thus, Logic is paraconsistent. :
Examples of the alleged true contradictions are not difficult to provide.
Under the influence of Zeno’s paradoxes, Hegel thought that a moving
object realized a contradiction: a body in motion was both at a certain
place at a certain time and not at it.> However, the validity of Zeno’s
arguments is decidedly doubtful.” Hence such dialectic examples of true
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contradictions are perhaps not so plausible. Much more persuasive examples*
of true contradictions are provided by the logical paradoxes. These are
examples of arguments in set theory and semantics which appear to be
perfectly sound arguments issuing in contradictory conclusions. If this is
indeed the case then clearly the contradictory conclusions are true. Those
who wish to deny this conclusion must show that the paradoxical arguments
are not really sound at all. This poses the problem of where to locate the
unsoundness. It is some measure of the unworkability of the unsoundness
position that there is still absolutely no consensus as to where to locate the
unsoundness (as there is, for example, with Zeno’s paradoxes) and this
some 2,000 years after the initial discovery of a logical paradox.

But how is it possible for a contradiction to be true? Quite simply. For
example consider the sentence

(c) This is a false sentence of English.

This has two components, a subject ‘this’ and a predicate ‘is a false sentence
of English’. Each of the components has certain semantic conditions. Thus,
the semantic condition of ‘this’ is its referring to a certain object—in this
case, (c) itself. The semantic condition of the predicate is that it applies
truly to a certain class of objects, viz. those which are false English sentences.
Now of course (¢) is contradictory. In other words the semantic conditions
of the components of (c) overdetermine its true value. They determine it to
be both true and false. Of course, one can state dogmatically that this is
incorrect, that we have got the semantic conditions of the components wrong
or something of this kind. But this is to elevate consistency into an inviolable
constraint on semantics; and why should we suppose it is? Semantic condi-
tions were not laid down by God or even by some Hilbert who kibitzed
them for consistency before unleashing them on the world. They have grown
up in a piecemeal and haphazard way. It would, quite frankly, be amazing
if they were consistent. Semantic conditions can be seen as determining a
field of meaning. Overdetermining truth conditions produce singularities
and other discontinuities in the field. But such are to be expected, and in
no way interfere with the rest of the field. Of course this is only a metaphor,
but it can help to break a mental set. :
Once one gets past this mental block—past the consistency hang-up—
“there are other plausible examples of true contradictions. For example, in-
the hypothetical legal set up described in the previous section it seems that
‘Jan has the legal right to vote’ and ‘Jan does not have the legal right to
vote’ are both true. A somewhat more controversial example'® concerns the
application of multicriterial terms. For instance, to determine whether a
phrase, such as ‘below 0°C’, correctly applies to a certain situation, we may
observe the behaviour of either a correctly functioning alcohol thermometer
or a correctly functioning thermo-electric thermometer. These work on quite
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different principles, and there is no sense in which one is more basic to our
determination of, or understanding of, temperature than the other. Certain
behaviour of either of these instruments provides a sufficient condition for
the correct applicability of the term ‘below 0°C’ or its negation, and both
have equal claim to determine an operational meaning of the phrase.
Normally the world is such that these two criteria hold or fail together.
However, in a novel situation they may well fall apart. In such a situation
both the assertion that the phrase applies and the assertion that its negation
does are true. By the symmetry of the situation neither claim can be truer
than the other. Hence either both are true or both are false. To suppose
that both are false would be to deny that they were criteria in the first place.
Thus they must both be true. An historical example of where criteria fell
apart in this way is the Michaelson-Morley experiment. Because of rigid
rod measurements, ‘The arms of the Michaelson-Morley interferometer are
congruent’ was true. Because of measurement in terms of time taken by
light rays, ‘The arms of the Michaelson-Morley interferometer are not
congruent’ was true."! '

Clearly there is a relationship between the proof-theoretic and the seman-
tic motivations for paraconsistency. If the semantic rationale is correct, then
the proof theoretic one is too. For if S is the set of things true in some
domain containing true contradictions then S is an inconsistent but non-
trivial theory. However, it is possible to accept the proof theoretic motivation
without accepting the stronger semantic one outlined. For one can hold
that there are inconsistent but non-trivial theories which are interesting,
have important applications, useful properties, and so forth, without accept-
ing that they are true. Instrumentalists and formalists would, of course,
have no problem in accepting such a theme, though they might well find
difficulties in clearly distinguishing the stronger, dialethic position from the
weaker, more pragmatic, position."> Whether either position is tenable on
other grounds is another matter, which we will investigate in more detail
as we proceed. Indeed, several of the issues raised above will be taken up’
in more philosophical detail in subsequent introductions. The discussion
so far merely serves to indicate some of the motivation for paraconsistency.

2. Approaches to paraconsistent logical theory: Initial systemic taxonomy of
paraconsistent logics; zero degree formulas

Having shown that paraconsistent logic is well motivated, we need to specify
a paraconsistent logical theory or theories. One thing is perfectly clear,
classical two-valued logic is of no use: it is explosive; it is not paraconsistent.
Nor for that matter are its extensions such as modal logic. Nor are intuitionist
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logic or its extensions, for they too are explosive, in virtue of their spread.
principles such as A->.~A- B and AA ~A- B. Many lesser known (but
nonetheless significant) logics also fail to meet paraconsistency require-
ments, and are accordingly logically inadequate to accommodate a range
of important philosophical and scientific theories and positions. Among
them are various connectional, or broadly relevant logics (i.e. systems
satisfying some variable-sharing principle linking antecedents and con-
sequent), in particular connectional logics which validate Disjunctive Syl-
logism, A A (~A A B) = B, and retain some residual form of Rule Transitivity.
Representative of this are conceptivist logics such as Parry systems and
connexivist logics.'> Furthermore, other logics that are technically paracon-
sistent, such as minimal logic, are not interestingly paraconsistent because,
although they avoid the disaster of entirely trivializing inconsistent theories,
they have the same effect for a whole syntactically determined class of
statements. For example, minimal logic would have as holding, in any
inconsistent theory at all, all statements of the form ~B in virtue of its
spread principle, A>. ~A-> ~B. ‘

Beyond this negative data, much less is clear. What should a paracon-
sistent logical theory be like? There are three fairly well developed answers
to this question. What follows will be largely an attempt to explain these
three main approaches and to assess, in so far as possible, which is the
most viable approach. While no claim is made that these are the only
approaches, a well motivated approach fundamentally different from any
of these is difficult to envisage, for the following reasons: any adequate
logic—adequate that is for the basic relation of deduction—will contain an
implication connective, -, which conforms to modus ponens, i.e. A,
A~ B/B. Hence any adequate paraconsistent logic will have to break nega-
tive paradoxes of implication such as ~A—-. A- B, and there are only so
many general strategies for doing this that are compatible with paracon-
sistency. A first distinction is between approaches that do not break corre-
sponding positive paradoxes, such as A-.B->A and therefore are
characteristically obliged to sacrifice parts of negation theory, in particular
Contraposition, and on the other side, approaches that also defeat positive
paradoxes. Approaches of the first type, the positive-plus approaches, can,
like intuitionism, avail themselves of the full strength of Hilbert’s positive
logic (or extensions thereof), whereas approaches of the latter type, while
they can retain negation theory intact, have to adopt a less extravagant
positive logic, in effect either some type of modal system or else a relevant.
positive logic. The modal approach cannot be quite the usual one—though
modal substitutivity conditions can be retained, justifying use of the term
‘modal’'*—because paraconsistency requirements would be violated by the
following route through conjunction:—

1. BA~B- B, from Simplification, AA B- A, a modal thesis.
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2. Arn~A<.Ba~B,since Ar~A and B A ~B do not differ, e.g. in truth
conditions, in any modal (i.e. complete possible) worlds, where C< D
is (C->D)A(D->C).

AAr~A-B, from 1 and 3 by (modal) substitutivity conditions.
{C,D}=CAD, i.e. Adjunction, a usual modal rule.

{A, ~A}E=B, from 3 and 4.

N

Something has to give, and what has given, and had to give, in the modal
approach is Adjunction, so yielding the non-adjunctive approach to paracon-
sistency. For to abandon equivalence 2, and accompanying substitutivity,
would be to abandon a modal approach, for something in the order of a
relevant one, while to reject 1 would be to opt for connexivism, which,
since it blocks inference from inconsistency, is not at all congenial to
paraconsistency (as we have already noted), and in any case also leads
back to a broadly relevant, or connectional, approach.

The three main approaches are accordingly, the non-adjunctive approach,
the positive-plus approach (of da Costa), and the (broadly) relevant
approach. We will investigate these sorts of systems, as far as possible, via
their appropriate semantics since these offer, in our view, the clearest
understanding of the strengths and weaknesses of the approaches. In so far
as paraconsistent logic differs from classical logic, it does so mainly at the
propositional level. Hence our discussion will be primarily focussed on the
zero order level. Quantifiers and other first order devices can be added in
a fairly obvious and straightforward way to all the systems considered.
However, at the zero order level it is useful and illuminating to separate
the zero degree fragment from the rest. The zero degree fragment of these
systems concerns the purely truth functional connectives, A, v, ~, and a
number of the important theoretical disagreements between the approaches
appear already at this stage. Higher degrees concern the (iterated) behaviour
of implication, -, the issues concerning which are best dealt with separately.
Accordingly, we will start our discussion at the zero degree level and reserve
the implicational issues until the next section.

2.1. Non-adjunctive systems: Jaskowski’s system

The non-adjunctive approach was pioneered by Jaskowski'> (see the
Introduction to Part One). The line has been further developed formally
by da Costa and a number of co-workers,'® and has recently appeared again,
in thinly disguised form, in the work of Rescher and Brandom’. Basically,
the idea is as follows: A (piece of) discourse may be produced by a number
of different participants. Each contributes to the discourse by producing
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information which is assumed self-consistent, but which may contradict the
information of others. (Perhaps a paradigm example is that of the informa-
tion presented to a jury at a trial; another example is that of data from
different sources fed into a computer.) The things that hold in the discourse
(or are true in the discourse) are things which are put forward by some
participant.'® How is this approach to be formalized? We may suppose that
each participant has a position. This is the story s/he is prepared to tell,
the set of things s/he believes etc. and since this is self-consistent, this can
be identified with the set of things true in a classical propositional evaluation,
or possible world of standard modal logic. The discourse is just the sum
of the participants’ positions. Hence the things which hold in the discourse
are just the things which hold in any one of the worlds which is a participant’s
position. Consequently let # be a possible world model of some modal
logic. Let us say S5 for the sake of definiteness. (Different modal logics will
give rise to different paraconsistent logics; we will comment where that
difference is of any significance.) The definition of ‘A holds at world w
(wk= A)’ is as usual. We will define ‘A holds discursively in (M E=4A)’ as
follows: ‘ '

ME=4A ff for some world w in M, wEA. (a)

We can now define discursive logical validity and discursive logical con-
sequence in the obvious way.

=4 A iff for all 4, M= 4A.
Sk, A iff for all # either IBe S M 4B or ME4A.

It is evident that the things which are discursively logically valid are precisely
the things which are S5 valid. In particular, a purely truth functional, zero
degree formula A is discursively logically valid iff it is a two-valued
tautology. By contrast the deducibility relation is anything but classical.
For quite clearly {A, ~A}#4B. A countermodel is easy to specify; it simply
reflects the picture of discourse with contradictory inputs.

But although the motivation for discursive paraconsistent logic is clear
and intelligible, and has good historical roots, there are grave doubts about
its adequacy with respect to the basic motivation for paraconsistency. For
a start discursive logic fails to be adjunctive. It is easily seen that {A A B} =4A.
However, it is equally easy to see that {A, B}##4A A B. This means that
conjunction has decidedly non-standard behaviour. This by itself may not
be a very heavy point. In any paraconsistent logic something must behave
non-standardly (that is, non-classically). However, in this particular case it
casts doubt upon whether conjunction really is conjunction in discursive
logic. For conjunction just is that connective which has the truth (holding)
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conditions: —A A B is true (at a world) iff A is true and B is true (at that
world). So something that fails adjunction is not then conjunction. Of
course, there is no particular objection to having a non-standard operator
‘A’ with curious truth conditions, and hence strange meaning. But it is a
serious criticism that A  has no recursive truth conditions, i.e. it is impossible
to find a condition ¢ such that :

M=y ANBAfE Y(ME=gA, M=4B)."

‘A more important point is, however, that there can be no objection to there
being a genuine conjunction in the system. Perhaps, then, discursive logic
just suffers from an omission? Suppose we add a genuine conjunction to
the language with the semantic conditions

MEqA+B iff MiEyA and ME=4B. ()

The problem now is how to define the truth conditions of truth functions
of sentences of the form A+ B. There are two possibilities.

The first is that we can find some formula of the unaugmented modal
language with two propositional parameters, with which + can be identified.
Condition (a) then provides the truth conditions of formulas in a straight-
forward way. This approach has been adopted by da Costa, who defines
discursive conjunction, using the possibility functor M, thus:

ArgB=MAAB?*®

Discursive conjunction can quickly be seen to satisfy condition (83), at least
in S5. Actually the lack of symmetry between A and B in the definition of
Aq is displeasing and makes the definition appear to float in mid-air. It
would be clearer to define

A+B=MA A MB. | ()

- Condition (B) is still satisfied.

The problems with this approach to conjunction are two-fold. First, it is
totally opaque why a modal functor such as M should poke its nose into
the meaning of ordinary extensional conjunction. Granted that (B) fixes
the extension of +, () fixes the sense. This makes it quite clear that + is
not ordinary conjunction, even though it has the right extension.

Secondly, this approach to conjunction totally destroys the normal
relationships between conjunction, disjunction and negation. For example,
none of the following holds: '

{~A}E4~(A+B); {~A+~B}=4~(AvB); {~Av ~B}E=4 ~(A+B).

This is little more than the consequence of the fact that a modal functor
has got embroiled in conjunction. It is worth saying again that some classical
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logical relations will have to go paraconsistently. However, the wholesale
destruction of the relations normally taken to hold between conjunction,
negation and disjunction clearly speaks against discursive conjunction. This
is especially true when there are other options (such as the relevant one)
which preserve virtually all these relations.

The other possibility is to refuse to identify A+B with any sentence
functor of the unaugmented language, but to give the truth conditions of
compounds of + sentences in the usual way, e.g. '

Fq~(A+B) iff #M#,A+B

and similarly for conjunction and disjunction. This, at least, preserves all .
the classical relations between conjunction, disjunction and negation.
However, it runs into other problems. In particular, it reinstates a very
general form of non-paraconsistency. For it is now easy to see that

and as a special case
{A+A, ~(A+A)}=4C

Now, not only is it difficult to discern a connection between the premisses
and the conclusion, but this is little better than the full, horrible, ex falso
quodlibet. Should one participant in a discourse say ‘It is raining and it is
raining’ and another say, ‘No, that’s not the case’, the whole thing, quite
counterintuitively, blows up. No one who takes paraconsistency seriously
can accept this option.
- The second objection to approaching paraconsistent logic discursively is
more damaging than the first. It concerns the relation of logical consequence
which is (as befits a paraconsistent logic!) both too strong and too weak.
First it is too strong. It is easily seen that {A}F=4B iff B is a classical
two-valued consequence of A. This means that discursive logic is only
half-heartedly paraconsistent. For everything does follow discursively from
a conjoined contradiction: {A A ~A}=4B. What stops discursive logic from
lapsing into non-paraconsistency is just the non-standard behaviour of
conjunction. Because single premiss discursive validity coincides with
classical validity, discursive logic is extremely badly suited to be the underly-
ing logic of some of the most important inconsistent theories.”' For example,
classically {yVx(xeyexgx)}=3y(yeyay£y), and y(yeyary£y)EB.
Hence if X is the set of instances of the abstraction scheme of set theory,
3k4B. Thus discursive paraconsistent logic is totally unsuitable as the
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underlyinglogic of naive set theory. Similarly it is unsuitable as the underly-
ing logic of naive semantics.

Rescher and Brandom try to avoid this dlfﬁculty2 by suggesting that
instances of the abstraction scheme which give rise to trouble be split into
two halves. Thus the instance generating the Russell paradox becomes the
pair comprising Vx(x€ R—»>x#x) and Vx(xg x> x€R). Set theory is then
.split into essentially two distinct theories, one of which contains the first
of these and the other of which contains the second. Each of these two
theories then holds in a different possible world.

In fact this strategy has only the appearance of paraconsistency. In essence
it is just a revisionist classical position. For paring an inconsistent theory
down to various consistent subtheories is a game® that classical set theorists
have been playing for eighty years. The classicist is quite happy with both
the above fragments of set theory. Hence this line does not take the first
motivation, for inconsistent theories (as opposed to consistent fragments
of inconsistent theories), seriously. All that Rescher and Brandom add to
the classical position is the insistence that both fragments be true. However,
the classicist will understand this as ‘true in some possible world’ and there
will be no disagreement. Neither can the discursivist really object to the
classicist understanding. For this is, in effect, what his understanding of
paraconsistent truth amounts to as well.

The other side of this objection to discursive logical consequence is that
it is too weak. To be exact, let = be a non-null set of zero degree formulas
and let A be a first degree formula. Then, if =4 A there is some Be€ X such
that {B}F=4A. To see this, suppose for reductio that there is no Be X such
that {B}=4A. Then for every B we can find a model /g such that, for some
world w in g, B is true in w, whilst for no world w, A is true in w. Let
M be the collection of all the worlds in every /g. Then M is countermodel
to TF4A. ,

Hence there is no such thing as a valid multi-premiss discursive infer-
ence!** This shows that as a logic for drawing inferences in real life situations,
discursive logic is useless. (This too is important since one of the main
motivations for paraconsistency was that useful conclusions should be
drawn from actual inconsistent data, e.g. laws, judicial evidence, etc. Para-
consistent logic should, as Jaskowski puts it, ‘be rich enough to enable
practical inference’.)>> For no premisses can be. combined to draw con-
clusions. Conceivably we might consider each of the participants in a
discourse to be offering one long conjoined statement. However, by the
very motivation, the contributions of each participant are not to be con-
sidered as conjoined. What follows in ‘a discourse is all and only what
follows from the contribution of any one participant. (The judge cannot
infer from the statements of witness A that Jones was in the room and of
witness B that no one else was in the room that Jones was the only person
in the room!) This shows that discursive logic is not really acceptable even
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according to its own rationale, namely the drawing of reasonable inferences
from inconsistent data from different sources. In fact both the other
approaches to paraconsistency we will consider are better suited to this
end. ‘

We can sum up the foregoing discussion simply. Discursive logic may be
either single premiss or multiple premiss. In the first case it is classical. In
the second it is really no logic at all. In neither case it is suitable for the
investigation of inconsistent theories. The main problem with the discursive
approach is just that it does not take the second, dialethic, motivation
(that there are true contradictions) seriously. Contradictions may be “‘true”
but this amounts to no more than “true in different worlds”. Moreover each
possible world is as consistent as any classicist could wish: the approach
is much too modally based to accommodate inconsistency satisfactorily.?
For all these sorts of reasons, the non-adjunctive modal approach to para-
consistency should be dismissed.

2.2. Positive-plus systems: da Costa’s main systems

The most detailed study of positive-plus system was initiated (as we saw
in a previous introduction) by da Costa, who proposed a family of paracon-
sistent logics C;, where 1 <i< w.*” The systems differ in points of detail but
share the same basic semantical motivation. In fact the axiom systems came
first and the semantics only later.”® But the semantics are the most illuminat-
ing path to da Costa’s approach, so we will concentrate on these, and in
particular the semantics of system C,,. ’

Unlike discursive logic, da Costa does take the idea that there are true
contradictions seriously. Da Costa formalizes this as follows. Given a
propositional language, a da Costa evaluation is a function » which maps
every formula to 1 (true) or 0 (false) satisfying the conditions

(1) v(AAB)=1iff v(A)=1 and »(B)=1
(2) v(AvB)=1iff v(A)=1o0r v(B)=1
3) v(~A)=1if »(A)=0

(4) v(A)=11if v(~~A)=1

There are also conditions for > too. We will consider these later. The above
conditions can be shown to be characteristic for the zero degree part of C,,.
The conditions for A, v are normal ones and ensure that these really are
conjunction and disjunction. The deviation from classical logic is only in
the conditions for ~. (3) ensures that at least one of A, ~A is true (though
both may be). And the rationale for (4) seems to be something like this: if
it is not the case that not-A then since (by (3)) one of A and ~A is true,

162



A is true. Logical truth and consequence are defined in the usual way:

SEcA iff for all evaluations v, either v(A)=1orforsome BeX »(B) # 1.
FcA iff for all evaluations v, »(A)=1.

Quite clearly, neither {A, ~A}E=cB nor {AA ~A}=cB.

The problems with da Costa’s approach are perhaps not so obvious as
those with the non-adjunctive systems. However, in the end they are equally
telling.

The first objection is that condition (4) of the da Costa semantics is
ill-motivated. (4) appears to follow from (3). (It does not, since otherwise
it would be redundant.) The argument gets by by reading ‘v(~~A) =1’ as
‘It is not the case that ~A’ and then supposing that the latter means
v(~A)=0. This is a fallacy of equivocation since the inference from
v(~~A)=1to v(~A)=0 is invalid even in da Costa’s terms.

Without this argument, the motivation for condition (4) is totally obscure
on this approach. If the truth values of A, ~A, and ~ ~A are independent
enough to let all be true, why shouldn’t they be independent enough to let
the first be false and the last two be true? Compare this with the next
approach we deal with, where the connection in truth-value between a
sentence and its negation falls, quite naturally, out of the motivating con-
siderations. Of course condition (4) could be dropped from da Costa’s
semantics. However in that case, negation would have virtually none of the
properties traditionally associated with negation. (It has few enough any-
way.) This would strengthen our subsequent argument that da Costa’s
negation is not really negation at all.

The second objection to da Costa semantics is that they are non-recursive.
Now whilst non-recursive semantics may be admirable for many technical
purposes, there are good reasons for not being philosophically satisfied
with them. The arguments are well known, but the crucial point is something
like this: since speakers of a language are able to understand sentences they
have never heard before, the sense or meaning of a sentence must be
determined by the senses of its components. In particular, then, an adequate
semantics must specify recursively the meaning of a sentence in terms of
the meanings of its components. Thus generally speaking the specification
of semantic conditions must be recursive. Now da Costa semantics are
certainly not recursive since the truth conditions of ~A are not determined
by the truth conditions of A. (If »(A)=1, v(~A) could be 1 or 0.) Thus
these semantics have problems. This argument against da Costa semantics
is not completely conclusive. It could be met by arguing that meaning is
not completely determined by truth conditions, and that some other factor,
let us call it sense, is involved. It can then be argued that whilst meaning
conditions are recursive the truth conditions of a compound may depend
upon the sense (rather than the truth value) of its components. In particular
the truth value of ~A may be determined by the “sense factor-X” of A.
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This general approach to meaning is of course the one adopted in Montague
semantics. We will not detour to examine the adequacy of this general
approach to the theory of meaning. For it is enough to observe the following:
First, even if this approach could be made to work (and it cannot in
general®), da Costa semantics, as they stand, are radically incomplete.
Secondly, if this approach were to work it would show that ~ is not our
friendly neighbourhood extensional negation, but a radically intensional
functor of some sort. Of course this point may be countered, but it is the
first bit of evidence we will muster to show that da Costa negation.is not
really negation. ' ,

Let us turn from da Costa valuations to the set of zero degree logical
truths in da Costa’s approach. Since every classical evaluation is a da Costa
evaluation then we have that if Ec A, A is a classical two-valued tautology.
The converse however, is not true. The most notable exception is the law
of non-contradiction:

~(AA~A) | (¢)

The omission of this from a system of paraconsistent logic is not surprising.
Nor is it a coincidence that it happens in da Costa’s system; for he lays
down as a condition of adequacy on a paraconsistent logic that (&) not be
valid.*® The rationale for the omission of (&) appears to be clear enough:
some statements of the form A A ~A are true. However, we should proceed
with care. This does not settle the matter—even by da Costa’s standards.
For the fact that AA ~A is true does not prevent ~(A A ~A) from being
true too. In fact, insisting that the absence of (&) be a condition of adequacy
on a paraconsistent logic is far too strong. It is quite open for a
paraconsistentist to adopt (&), as the next approach we examine will show.
Of course if we do adhere to (&) then any contradiction A A ~A (let us call
this a primary contradiction) will generate another (AA ~A)A ~(AA~A)
(let us call this a secondary contradiction). However, obviously there is no
a priori bar to this for the paraconsistentist.

Is it best then to hold on to (&) or to reject it? We do not wish to be too
dogmatic about this. However, presumably any case against (&) will hinge
on the undesirability of secondary contradictions. Conceivably we might
invoke the razor that contradictions should not be multiplied beyond

‘necessity. However, even if this is correct (and is it?) it does not get us very
far until we know what “necessity” is. We think the case in favour of (&)
much more plausible. Part of it goes like this. The law of non-contradiction
has traditionally been seen as a central property, if not a defining charac-
teristic, of negation. And this is true not only of traditional and classically
oriented logicians such as Aristotle and Russell, but also of those who .
believed in true contradictions such as Hegel.’! That an account of negation
violates the law of non-contradiction therefore provides prima facie evidence
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that the account is wrong. This is the second piece of evidence that da Costa
negation is not negation.

In fact, we can make the claim more precise. Traditionally A and B are
sub-contraries if Av B is a logical truth. A and B are contradictories if Av B
is a logical truth and AAB is logically false. It is the second condition
which therefore distinguishes contradictories from sub-contraries. Now in
da Costa’s approach we have that Av ~A is a logical truth. But Axn ~A is
not logically false. Thus A and ~A are sub-contraries, not contradictories.
Consequently da Costa negation is not negation, since negation is a contra-
diction forming functor, not a sub-contrary forming functor.

Let us now turn our attention to the relation of logical consequence.
Again it is easily seen that this is a sub-relation of classical two-valued
logical consequence. However, the following fail, showing that it is a proper
sub-relation.

{~Al=c ~(AAB) {~(AVB)}=c~A
{A}Ec~~A {~AA~B}=c~(AvB) (k)

{~Av~B}=c~(AAB)
Moreover as we shall be able to see later the following also fail.

{ASB}ic(~B>~A)

| (A)
{A>B,A>~B}Ec~A
This shows that da Costa negation has virtually none of the inferential
properties traditionally associated with negation. (Compare this with nega-
_tion in the next approach we consider, which has all the above properties.)
This is a further piece of evidence suggesting that da Costa negation is not
really negation. We have now mustered strong evidence to this effect and
the case seems pretty conclusive. It is time to ask what da Costa negation is.
The key to this problem is provided by our discussion of the logical
truths. We saw there that da Costa negation behaves like a sub-contrary
forming operator, not a contradictory forming operator. Indeed, the truth
conditions of negation (3) make this reading of ~ almost mandatory. Hence
we suggest that da Costa’s negation is an operator which turns a formula
into a sub-contrary. This not only explains the truth condition of ~ and
the behaviour of logical truths, but is also well confirmed for other reasons.
First, if ~ is a sub-contrary forming operator then we should expect all
the inferential principles (), (1) to fail, which they do. Secondly, this fact
explains why ~ is not truth functional. For the truth value of a subcontrary
of A is not determined by the truth value of A. Thus ~ is not an extensional
functor. All this fits the picture.
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So, ~A is a sub-contrary of A, but which? For although the contradictory
of a statement is unique, it may have many sub-contraries. Which is ~A?
It must be a sub-contrary which satisfies condition (4) of the semantics.
However, this is by no means sufficient to determine the functor ~ uniquely.
If A and B are any sub-contraries then the functor which maps A to B and
vice versa satisfies this condition. There are no other constraints on ~ to
determine which sub-contrary functor it is. Hence the answer to this question
must be radically indeterminate.

Is the lack of a genuine negation operator in the C systems merely a
matter of omission? The answer is a quick and simple ‘No’. For if we were
to add an operator, —, with the obvious conditions for negation,

v(—A) =1 iff »(A)=0,

it is easy to see that non-paraconsistency would be reinstated. For then
{A A —A}E=cB. Thus the C systems achieve their paraconsistency only at
the cost of dispensing with negation.

So much for da Costa’s general approach to zero degree formulas—points
that rub off on to the more comprehensive positive-plus approach. Before
we set such approaches aside, however, it is worth discussing the way da
Costa strengthens system C,, to produce the systems C;, 1 <i<w. For the
sake of definiteness we will fix our attention on C; (though all the points
made apply equally to the others).

It is clear that on a da Costa evaluation there are two kinds of statements:
those that are “paradoxical”, i.e. those such that »(A)=w»(~A)=1 and
those that are “classical”, i.e. such that »(A) # v(~A). Although classical
logic does not hold for all sentences, it would be reasonable to suppose
that it holds for sentences with classical values. (Actually. in C, it does
not.) Moreover, it is reasonable enough to suppose that this should in some
sense be expressible in the language itself. In particular suppose we write
‘A% for ‘A has a classical truth value’, then the following is reasonable:

If B is a compound of A, ... A, and TEcAA ... AA? then
I'=cB iff B is a classical consequence of I'. ; (&)

Achieving this is precisely the motivational move from C, to C,.

First, a “classicality” operator ° has to be produced. There are two
different approaches possible here. The syntactic approach is to identify ‘A
is paradoxical’ with ‘A A ~A’ and hence define ‘A has a classical value (A°)’
as ‘~(AA~A)’. The semantic approach is to give the truth conditions of
A? directly as:

If v(A) # ?(~A), (A% =1
If »(A)=v(~A)=1, »(A%) =0.
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Da Costa wants to follow both these approaches. He defines A’ as
~(A A~A). From this, the first of the semantic conditions follows. For if
»(A) # v(~A), v(Ar~A)=0and v(A%) = »(~ (A A ~A)) = 1. However, the
second does not follow in C,, semantics. Hence it has to be enforced with
a new. semantical postulate to this effect:

If (A A ~A) =1, »(~(Ar~A)) =072 ()

The only other semantical postulates for C, ensure that all formulae com-
pounded entirely from formulae with classical values have classical value,
thus: :

If »(A%) = »(B%) =1 then »((AAB)°)=»((AvB)°)=»((A>B)")
=v((~A)%) =1 o

These conditions ensure that (£) holds,*® thus fulfilling the motivation.

There are a few points to make about extending C,, with a “classicality”
operator. The first is that it in no way affects our conclusions about the
* interpretation of da Costa negation. Even in C,, negation is non-extensional,
the law of non-contradiction still fails and so do all the principles of inference
(k) and (X). Thus our conclusion that ~ is a sub-contrary forming operator
still stands. (Although, of course, the extra semantic constraints on ~ add
some further constraints on which sub-contrary of A, ~A can be.) The
second and more important point is that the addition of a classicality
operator in this way leads to new trouble. It is easily checked that for any
formula B, »(B A ~B A B°%) =0 for any ». Thus

{BA~BAB%E=c A, : (£)

Hence if we can ever prove a theorem of the form B A ~B A B, things reduce
to triviality. But it is easy to produce a theorem of this form in a semantically
closed language (as da Costa has noted).’* By the usual self-referential
construction we can find a statement B such that < (~B A B°). (This
sentence is false and has a classical truth value.) It is then easy to prove
with reasoning valid in C, (in fact in C,,) BA~B A B°. A similar argument
can be performed in naive set theory. Hence C, is entirely unsuited to
formalizing two of the most important paraconsistent theories. Moreover,
~the trouble extends much more widely, to other paraconsistent theories,
and to restricted forms of set theory.”

This is, of course, a major additional argument against the C, approach
to paraconsistency. However, there is a more general lesson to be learnt
here. Since the situation does not arise in the same way in C,,, the problem
lies with the classicality operator. We can locate the trouble more precisely.
In the proof of B A ~B A B°, the only fact specifically about B° that is used
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is that ~(B8°) > B A ~B and this is guaranteed by the syntactic definition of
A°. What produces the special case of ex falso quodlibet ({) is precisely the
semantic conditions of B°. Thus we see that the semantic approach to a
classicality operator and the syntactic approach are incompatible. Plausible
as both may seem, one has to give. Let us move on to the third approach
to paraconsistency. This is the relevant one taken by both authors.*®

2.3. The relevant approach

Semantically there are several ways of proceeding. We will choose one that
has seemed (especially to the more classically-inclined) particularly simple
to grasp.”’ Like da Costa’s approach, the relevant approach takes seriously
the view that some statements are true and false. However, instead of
insisting that every sentence take a unique truth value, it allows statements
to have both.

Formally, let V={{1}{0}{1, 0}}. Here {1} is (the classical) true and true
only; {0} is (the classical) false and false only; {1, 0} is (the paradoxical)
true and false;

A valuation is a map v from the set of zero degree formulas to V such that

la) 1e v(~A)iff 0O v(A) : b) Oev(~A)iff le v(A)
2a) 1e v(AAB)iff1e v(A)and1e»(B) b) 0c v(AAB)iff
0e v(A)or0e v(B)
3a) 1e »(AvB)ifflev(A)orlev(B) b) 0ev(AvB)iff :
: 0c v(A) and 0 v(B)

Logical truth and consequence are defined in the obvious way.

3 =gA iff for all evaluations v either 1€ »(A) or for some Be X, 1¢ v(B)
FrA iff for all evaluations », 1€ v(A).

It is easy to see that these truth conditions are paraconsistent, i.e. that
{A, ~A}¥ g B. Moreover, the truth conditions look very familiar. Indeed
they are just the classical ones. Of course in the classical case the second
one of each pair is redundant. However, this is no longer the case when
we have grasped the paraconsistent insight that things may be both true
and false.

Some of the more important features of the deducibility relation are as
follows:

{A, B}FrAAB - {AAB}=gA ‘
{A}=zAVB | If {A}=x C and {B}=¢ C then
" ~ {AvB}E=RC -
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If {A}=x B and {B} =x C then {~A}=r ~(AAB)

 {A}=RC
{~A, ~B}=g ~ (A v B) {~(AvB)}Eg~A
{A}’::R"”“A {"' ~A}#=RA

{~Av~B}Er~(AAB)(and all the other De Morgan principles).

Moreover it is straightforward to establish that Eg A iff A is a two-valued
classical tautology.*®

. These properties make it easy to see that this approach avoids the problems
of the two previous approaches. Unlike the non-adjunctive systems, it has
an adequate conjunction and a decidedly non-trivial multi-premise deduci-
bility relation. The properties of negation are neat and simple and no extra
semantic postulates have to be added, as in da Costa’s approach, to ensure
bits of double negation. Moreover, there can be no doubt that the negation
of this approach is negation. The semantics are recursive and extensional.
Thus ~ is not an intensional functor. Both the laws of excluded middle
and non-contradiction hold and negation has all the deducibility relations
one would expect.”® Someone might try to make out that the negation of
this system is not really negation. But in virtue of all the above points, they
would have little ground to stand on. The negation of A is that statement
which is true if A is false-and false if A is true. But this is exactly what the
relevant truth conditions say.

A pleasing feature of the semantics is that the set of zero degree logical
truths is exactly the set of classical tautologles This shows that this is a
particularly stable set of formulas valid in both classical and inconsistent
contexts. Moreover, it shows that in a sense relevant paraconsistent logic
subsumes classical logic at its zero degree level.

Turning to the deducibility relation, it is easy to see that this is a
sub-relation of the classical one. Indeed on pain of non-paraconsistency,
this must be a proper sub-relation. Those running through the list of valid
consequences given above, and not familiar with relevant logic, might
wonder exactly what of classical logic is paraconsistently invalid. The answer
is that it is the principle of the disjunctive syllogism

{A,~AvB}FB
and its cognates such as
{A, ~(AAB)}=~B.
This is in fact the only major principle of classical inference that is rejected
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on the relevant paraconsistent approach. Despite this, its rejection has drawn
some fire from various sources. A full discussion of the issue would involve
a considerable detour.* However, a few points are worth making. First, as
we pointed out right at the beginning, if paraconsistency is to be taken
seriously, something of classical logic has to be rejected. It is therefore no
argument against this approach per se to point out that the disjunctive
syllogism is rejected. Indeed the relevant approach holds the losses from
classical logic to a minimum at the zero degree level. Both of the other
approaches we have considered lose the disjunctive syllogism and much
else besides. This is the only loss on the relevant paraconsistent position.
Moreover, the loss of the disjunctive syllogism is not as great a blow
as might be thought. First, many of the cases of disjunctive syllogism occur-
ring in natural practice use an intensional ‘or’, v. This can be defined
simply

AvB=~A->B
The intensional disjunctive syllogism
{A,~AyB}~B

is certainly valid.*' In fact it is little more than modus ponens.

The second and more important reason is that although the disjunctive
syllogism is generally invalid, it is usable in certain contexts. The point
needs to be handled with some care as a later paper in this collection®
shows. However, basically the point is this. The reason that the disjunctive
syllogism fails is that the sentence A may be paradoxical. If A and ~A are
true, then so are A and ~A v B, whatever B is. However, if this case is ruled
out no more counterexamples to the disjunctive syllogism can be produced.
Thus, provided we are not in a paradoxical situation (i.e. one where A is
both true and false), the disjunctive syllogism can legitimately be used.
Now it is easy to see that if the disjunctive syllogism is added to zero degree
relevant paraconsistent logic, classical logic results. Hence what we see is
that in non-paradoxical, consistent contexts (which are of course the only
ones countenanced by classical logic anyway) classical logic is acceptable.
Thus the general failure of the disjunctive syllogism is not a serious problem.

With the rejection of this—perhaps the major objection to relevant para-
consistent logic—we conclude that the relevant approach is the best one to
paraconsistency, at least at the zero degree level.

One final point: if one admits truth-value gluts (i.e. statements that are
both true and false), it might seem natural to accept truth-value gaps (i.e.
statements that are neither). In fact all the approaches to paraconsistency
we have discussed can be modified in fairly obvious ways to allow for this
-possibility. However, the matter of truth-value gaps is a separate issue, in
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no way entailed by the paraconsistent position. Accordingly, the issues
raised by the modification of these logics to allow for truth-value gaps are
not, strictly speaking, relevant to paraconsistency. It is for this reason that
we can avoid opening this problem here.*’

3. Approaches to paraconsistent logical theory: implication

So far we have concentrated on features of the various approaches to
paraconsistency at the zero degree level. However, all the approaches have
distinctive implication operators. This is no accident. Implication is a central
logical connective. Any adequate logic must give an account of its behaviour.
The classical analysis of the implication operator- identifies A—> B with
A > B (i.e. ~Av B). This results in an equation of modus ponens, A, A-> B/B,
with the disjunctive syllogism, which (as we saw at the end of the last
section) fails in all the semantical approaches we considered. Yet modus
ponens is the fundamental principle governing implication. No operator
which fails to satisfy this can be implication. Hence each of the approaches
-must find a different, non-classical, account of implication.

3.1. Non-adjunctive systems, such as Jaskowski’s system

Since the non-adjunctive approaches use possible world semantics, the
natural implication operator in this context would certainly seem to be strict
implication. Let us define A — B, as usual, to be (1(A > B). Then it is easily
verified that {A, A — B}=4B. Observe that although strict implication suffers
from paradoxes which appear to make it unsuitable for paraconsistency
(e.g. (A A ~A — B)), this is not the case given that adjunction fails. Ja§kowski
~ is well aware of this possible definition of implication,* though he opts for
another possibility which we will discuss shortly. Nonetheless, we should
ask whether strict implication is a satisfactory implication operator in the
context of discursive logic.

The answer is that it is not. The first point is that although modus ponens
holds for strict implication if the underlying modal logic is SS, it fails for
weaker logics. However, the two most important objections are ones which
we will meet several times in this part; hence it is worth giving them names.

The first objection is the irrelevancy objection. The point here is that an
implication should hold between A and B only in virtue of some common
content between A and B. The truth value of an implication should not
depend simply upon the truth value of one of its components, nor on the
modal value of one of its components. Implication is essentially relational.
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This, though fairly banal, runs against classical (though not traditional)
orthodoxy. It is a mark of the extent to which indoctrination of the classical
view has been effective, that the irrelevancy of classical logic has not been
seen as a defect in need of a remedy, and that vast amounts of argument®
have been necessary to try to reopen people’s eyes to the point and to
reorient vision towards the True. However, given the enormous amount
that has been written on relevance, it would be otiose for us to argue the
case for it here again. Let us therefore merely endorse, or re-endorse, the
arguments of Anderson, Belnap, Meyer, ourselves and many others, that
implication is relevant. Now relevant logic and paraconsistent logic are not
the same thing. It is possible to have irrelevant paraconsistent logics (as we
are just about to see) and vice versa.*® Hence relevance is not de rigeur for
a paraconsistentist. However, while we are in the process of reworking logic
we might as well get implication right—in which case irrelevance is a failure
of a paraconsistent logic.

So far so good. But what exactly is the relevance requirement? Again
this is a deep question and, since this is a book about paraconsistency, one
that we can fortunately largely avoid. For present purposes all that is
necessary is a test for irrelevance, and for this the Anderson and Belnap
variable-sharing test will do nicely.*” A sufficient condition for a (purely)
propositional logic to be irrelevant is that it have a theorem (logical truth)
of the form A - B where A and B have no propositional variable in common.
In such a case A and B have no common content. Having got this far it is
now easily seen that strict implication is irrelevant, even in a discursive
context. For F4(AA~A)—=B, E4B—(Av ~A), and all the other horrors
of strict implication. Thus this approach to implication fails the relevancy
objection. ' 4 , :

The second objection is the Curry objection. There is an argument, due
to Curry,*® which shows that under certain conditions, naive set theory and
semantics are trivial, that is, anything can be proved in them. The argument
can be put in a number of different forms. Here is one of them.

Let B be the sentence ‘If this sentence is true, A is’ where A is arbitrary,
ie.

B=rTrp > A
By thé truth scheme of naive semantics

TrB o (TtB > A). _ : (1)
Hence by absorption (C- (C~»D))/C~ D from left to right

TrB > A. (2)
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‘So by (1), (2) and modus ponens

T R (3)
and by (2), (3) and modus ponens |

A.

Thus if naive semantics is based on a logic which contains modus ponens
and absorption, it is trivial. A similar result holds for naive set theory. Now
one of the main motives for paraconsistent logic was the investigation of
interesting inconsistent theories, of which naive set theory and semantics
are perhaps the two most interesting. Thus any logic which contains both
modus ponens and absorption is an unsuitable paraconsistent logic. In fact,
since modus ponens is essential to any implication operator, it follows that
a paraconsistent logic is objectionable if it contains absorption.

It is easily seen that absorption is true of strict implication, i.e. {A—

- (A= B)}=4A — B. Hence this is not a suitable paraconsistent implication.

The third and final objection we will present against strict implication is
similar to the second but a bit more parochial. For an additional reason,
strict implication is quite unsuited for the role of the underlying implication
of naive set theory and semantics. This is because {A«s ~A}=4B, where
&3 represents strict coimplication. An application of the abstraction axiom
of naive set theory (or the truth scheme of naive semantics), with the
implication operator being considered as strict implication, yields {x|x £ x} €
{x|x & x} s ~{x|x & x} & {x|x £ x}, whence, again naive set theory and seman-
tics are trivial. ,

As we said before, Jaskowski did not accept the obvious modal candidate,
strict implication, as an account of implication. His candidate for this, called
‘discursive implication’ (2,) is defined as follows:

Ao B ift MASB.

If we recall that the things true at some possible world are the story or

' position of some participant in the discourse, we can understand Jaskowski’s
gloss of A>yB as ‘if anyone states that A, then B’.* Leaving aside the
question of the adequacy of this gloss, it is easy to check that discursive
implication at least satisfies modus ponens:

: {A,ADdB}l:dB. '
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However, discursive implication fares little better than strict implication. It
is straightforward to establish, as Jaskowski himself did,’° the following fact:

Let A be any formula which contains only the connective >, and let A4
be A, with every occurrence of ‘>’ replaced by ‘>4”. Then F4A4 iff Ais a
two-valued tautology. The proofis as follows. Suppose that A is a two-valued
tautology. We need to show that for all #, A4 holds in #, which, by the
completeness theorem for S5 is true iff MA, is a theorem of S5. Now
consider MAy. It is easily checked that k=gsM(A 24B) e (MA > MB). By
repeated application of this strict equivalence we can drive all the ‘M’’s in"
MA, inwards as far as possible, replacing all ‘>4’’s with ‘>’’s. We then
end up with a formula which is a substitution instance of A, which is
certainly provable in S5. Conversely, suppose that A is not a tautology. Let
w be a classical world at which it fails and let # be the model which
contains only that world. Then /(= MB e« B and since A, is obtained from
A by the suitable insertion of M’s, (1~ A4. }

Thus the pure calculus of discursive implication is just the pure calculus
of material implication. It is not true that the ~, A, v, D4 fragment of
discursive logic is identical with classical logic. (For example, it is easily
checked that ##4A >4(~A>4B).) However, the initial result is damaging
enough. For it shows, first, that discursive implication, like material implica-
tion, falls to the irrelevancy objection since for example F4A>4(B>4B),
and second, that discursive implication falls to the Curry objection since
(A>(A>B))>(A>B) is a classical tautology.

Discursive implication does not fall to other objection mooted against
strict implication, but only because of a sleight of hand on Jaskowski’s part.
Suppose we were to define discursive equivalence =, in the obvious way,
viz. A=4B=(A>54B)A(B>4A); then it is easy enough to check that
{A=4~A}F4B, and so the objection would apply. JaSkowski, presumably
realizing this (but failing to give any reason) chose to define A=4B as
(A>4B)A(B>y4MA). This avoids the problem. However, it produces
a lopsided account of equivalence which is, intuitively, a symmetric
operation. Moreover it results in the failure of the clearly desirable
(A=4B)>4((A>4B) A (B>4A)), though the converse implication holds.

It might be thought that it would be better to define A >4B as MA > MB.
This receives the perfectly natural gloss ‘if A holds discursively, B holds
discursively’. So defined it would still satisfy modus ponens and now,
moreover, discursive equivalence can be defined in the obvious way without
disaster since

{MA>M~A)A(M~A>MA)}¥#4B.

However, this definition of >4 would not have solved the other problems.
For an argument exactly analogous to the previous one shows that, even
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as redefined, the pure o, fragment of the theory is the same as the pure
material implication fragment of classical logic. Hence the account falls to
both the irrelevancy and the Curry objections (see also footnote 157 of
chapter 1). -

Discursive implication whether defined in Jaskowski’s way or in our
suggested way has some other undesirable features. In particular it fails
several natural implication rules, e.g.

{AD4B}E4~Bo>~A {A>4B, Ao 4~B}Fs~A
whilst satisfying such curios as
Fa(AA~A)D4B E4AD4(Bv ~B).

For all these reasons discursive implication is an inadequate account of
implication. An obvious question to raise is whether there is any definition
of discursive implication which would be satisfactory. Naturally the con-
sequences of each definition have to be looked at separately. Yet it is easy
_to produce one objection to any definition.

Let ¢(p, q) be any modal sentence with two propositional parameters
p,q. Then ¢(p, q) is not a suitable definition of implication. For either
F#4d(p, p), i.e. implicational identity fails, or =4 ¢(p, p). In this case let A
be any logically true sentence. Certainly =,¢4(A, A). Now let q be any
sentential parameter not in A. Then since EgsAesqv ~q, Eqd(A, qVv ~q).
Thus the implication fails the relevancy objection.

Positive-plus systems similarly fail suitability requirements for paracon-
sistency, as we will next explain.

3.2. Positive-plus systems, such as da Costa’s main systems

Again we will start with the most accessible da Costa system, C,,. Semantics
for the full system C,, including its implication operator, due to Loparié,”
. take the following form: A semivaluation is any map v from formulas to
{0, 1} satisfying the conditions for a zero degree da Costa evaluation (see
~.above) plus these conditions for =

“if (A2 B)=0 then v(B)=0; if v(A>B)=1 then »(A)=0 or v»(B)=1.

“A C, valuation is any semivaluation v such that for any formula B of the -

D(A;2A;...A,)...),where A, is notof the formC>D,if »(B)=0

-there is a semivaluation v’ such that v'(A;) =1, for each i such that 1<i<n,

.and »'(A,) = 0. Logical truth and consequence are now defined in the usual
way.
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These semantics for the full C, are not, on their own, particularly
illuminating. Hence we will depart from our usual practice of analysing
logics via their semantics and approach C instead by its proof theory The
standard axioms for C,, are as follows.”

1. Ao(B>A) 5. Ao(AvB) [BD(AvB)]
2. (A>B)>((A>(B>0))>(A>C)) 6. (A>C)>((B>C)>

3. (AAB)>A [(AAB)>B] ((AvB)>(C))

4. Ao(B>(AAB)) 7. Av~A

8. ~~ADA

The only rule of inference is modus ponens for >.

Those who know their intuitionism will recognize that axioms 1 and 2
are axioms for the pure calculus of intuitionistic implication and axioms
1-6 are axioms for the positive intuitionist calculus. Thus C, contains both
these theories. In fact the axioms suggest that the implicational fragment
of C,, is exactly the pure calculus of intuitionist implication and the positive
part of C,, is exactly the positive part of intuitionistic logic. Indeed Lopari¢’s
semantics can be used to show that this suggestion is correct. C,, is a
conservative extension of positive intuitionistic logic.”

Thus we see that C, is essentially positive intuitionist logic plus the
“negation” operator—really a subcontrary operator—~. As is well known,
neither 7 nor 8 is intuitionistically valid, though their “opposites”
~(AAr~A) and A> ~ ~A are. This shows a certain symmetry between the
negation of C, and of intuitionist logic,”* which fits in well with the
discussion of C, negation in 2.2. For intuitionistic negation is plausibly
seen as a contrary-forming operator (rather than a contradictory-forming
one): AA~A is logically false and Av ~A is not logically true; and the -
connection between modal logic and intuitionist logic suggests that the
intuitionist negation of A is to be understood as something like ‘~A is
provable’ or ‘A will never be true’; both of which are contraries of A (at
least as normally understood). The “opposite” of a contrary forming
operator is a sub-contrary forming operator. And this is exactly what we
argued the negation of C, to be.

Having got-all this straight, we can now see quickly that the implication
operator of C, is inadequate. For it, like strict implication, falls to both
the irrelevance objection (since intuitionist logic contains irrelevancies such
as Ao(B>B) and C>(A>(AvB))) and the Curry objection (since it
contains (A>(A>B))>(A>B)).

The transition from C, to C, (and the other C; systems) does not make
matters any better; in fact it makes them worse. For if we add to the C,
axioms those required for the C, classicality operator, viz.

B°>((A>B)>((A>~B)>~A))
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and A°AB°>((AAB)°A(AvB)°’A(A>B)°A(~A)°) then Peirce’s law
((A>B)>A)>A) becomes provable and hence C, contains classical
material implication.” In fact if we add the semantical postulate for the
classicality operator to those for the Loparic semantics of C, we can then
simplify the semantic condition for > to the classical

v(A>B)=1iff v(A)=0or »(B)=1

and the difference between valuations and semivaluations vanishes. These
semantics can then be used to show that the positive fragment of C, is
exactly the positive fragment of classical two-valued logic. Thus C; is exactly
classical positive logic plus da Costa “negation”.

The fact that C,, (C,) contains conservatively the positive fragment of
intuitionist (classical) logic, is no accident. For one of da Costa’s motivating
principles for the construction of the C systems is that they ‘must contain
the most part of the schematic rules of...[classical logic] which do
not...[interfere with their paraconsistency, or make ~(AaA~A) prov-
able]’.”® Thus he is committed to a very strong implication operator. This

_is a mistake, not only because strong implication operators are irrelevant,
but because this very fact forces on da Costa his inadequate treatment of
negation. For example, the fact that the theory contains the paradoxical
A > (B> A) means that contraposition must fail. For that (together with the
transitivity of implication) leads immediately to the paraconsistently un-
acceptable A > (~A > ~B). Similarly the fact that the theory contains the
paradoxical A > (Bv ~B) means that either contraposition or De Morgan’s
law must fail. For if they held, we would have both ~(~Bv B) > ~A and
B A ~B> ~(~Bv B), giving the paraconsistently unacceptable (B ~B) >
~A. The same point may be made about the failure of contraposition in
discursive logic. Moreover, the fact that =4 (B A ~B) o4 A forces a discursive
paraconsistentist to give up the law of adjunction {A, B}=4A v B. Thus
although relevance is an issue separate from paraconsistency, a cavalier
attitude to relevance causes infelicities, at least, in a paraconsistent logical
theory. Neither material nor intuitionist nor strict nor discursive implication
is a suitable account for a paraconsistentist.

3.3. The relevant approach

All this forces us back to the third paraconsistentist approach to implication:
through a relevant implication. For our present purposes we again take a
broadly relevant propositional logic to be one satisfying the Anderson and
Belnap variable-sharing condition.”’ Clearly, any relevant logic will avoid
the paraconsistently execrable ex falso quodlibet and therefore will be a
prima facie candidate for a paraconsistent logic. However, there are many
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approaches to relevant logic. These may be usefully classified for present’
purposes as follows:

Connexive positions
7
Retain Transitivity
. 7 N
Accept Disjunctive Syllogism Conceptivist (Parry) systems’
N
Reject Transitivity —> Sieve positions

Retain Absorption —> Anderson-Belnap systems
7
Reject Disjunctive Syllogism
N
Reject Absorption — Depth relevant logics

Several of these approaches are not adequate for paraconsistency (and
sometimes in their own terms). So much we have already seen in the case
of connexivist and conceptivist systems which allow the spread of incon-
sistency.

The third approach to relevant logic 1ns1sts that a suitable logic should
be obtained by imposing a condition of relevance of relatedness (as a sieve)
on classical truth preservation.® Thus A- B is supposed to hold if A
materially (or strictly) implies B and R(A, B) holds where R is some suitable
relation of relevance, usually taken to be some kind of meaning connection.*
This approach we take to be fundamentally misguided, for a number of
reasons. Here are some.

First, such approaches normally (and with superficial plausibility) take
variable-sharing to be a sufficient criterion for relevance. If it is, then all
of (AAB)>B, A> (AvB), (AAr(~Av B))-> B come out as relevantly valid.
But, these plus the transitivity of ‘— lead, by the usual Lewis argument to
(A A ~A)~ B, which is clearly irrelevant. Thus, the transitivity of implication
has to be given up.®® This seems to be such a fundamental principle
of implication, almost as fundamental as modus ponens, that it should be
given up only under the most extreme of circumstances. Since there
are other approaches which validate transitivity, these circumstances do
not obtain.®!

Secondly, although such approaches rather automatically avoid the
irrelevance objection, they do not escape the Curry objection. For absorp-
tion, A>(A->B)->.A->B is a thesis of such systems along with modus
ponens. For A-» (A->B)->.A-B is a classical (or strict) thesis, and ante-
cedent and consequent are related, i.e. R(A->(A->B), A->B), since
R(A- B, A- B) (because R is reflexive) and so relates the consequent of
A-(A-B) to (A> B). Thus such systems are quite unsuitable for major
paraconsistent purposes.®
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Thirdly the relevance relation R would seem to be, what it is usually
taken to be, symmetrical. (If it is not, the nature of relevance becomes
obscure.)®® Now consider the clearly true: ‘Today is Monday’ implies
‘Tomorrow is not Monday’. Let us write this as A~ B. Then since it is true,
R(A, B) holds, and since R is symmetrical R(B, A) holds. Now suppose it
is Sunday, then B is false. Thus the inference from B to A is materially
truth preserving. Hence it is true that “Tomorrow is not Monday’ implies
‘Today is Monday’—an obvious absurdity. A similar example can be made
to work against those who wish to impose relevance on top of strict
implication. ‘31 is an even number greater than 2’ implies ‘31 is a composite
number’. However ‘31 is a composite number’ does not imply ‘31 is an even
number greater than 2’. Thus relevance is not an extra condition to be
tacked on, on top of truth preservation.* Rather relevance should be defined,
as traditional logic has it, in terms of implication.®

A more enlightened approach to relevant logic is that of Anderson and
Belnap, who start by trying to give an account of implication.®® Their
approach never, however, took due account of paraconsistency, and all
their systems of relevant logic, namely E and T and R, fall to the Curry

" objection. All contain the offending rule A-(A~-B)/A-B.*” Thus a
suitable relevant paraconsistent logic can be found only in systems weaker
than E, T and R, which have come to be known as ‘depth relevant logics’.%®
Again there are a number of different approaches to these, and since our
aim is not to give a survey of relevant logics, we will just outline one, which
has a strong intuitive content.*

Let L be a language. Where A is a sentence of L, let [A] be the sense or
objective content of A. Let < be the relation of sense containment, i.e.
[A]=[B] iff the sense of A contains that of B (i.e. all the content of B is
included in that of A). Clearly < is a partial ordering. Moreover, assuming
that the sense of a compound is a function of the senses of its parts, we
can define the functions U, N and * thus: [AJU[B]=[Av B]; [A]n[B]=
[AAB]; [AT*=[~Al. It can be convincingly argued that these operations
turn the partial ordering of senses into a De Morgan lattice, i.e. a distributive
lattice for which U is the join, n is the meet, and * is an involution, i.e.
a function such that a**=a and if a<b then b*<a*. Thus, for example,
the sense of A A B contains both the sense of A and that of B. Moreover
anything that contains both senses also contains that of AAB. Thus a De
Morgan lattice can be seen as a lattice of senses.

Now an algebra of senses allows us to define entailment in a very natural
way. For it is plausible to suppose, as many have done, that an entailment

istrue precisely if the sense of the antecedent contains that of the consequent.
Thus A~ B is true iff [A]<[B]. Formally, if T is the set of senses of true
sentences, [A—~> B] e T iff [A]<[B]. It is also reasonable to suppose that T

_is at least a prime filter on the lattice, i.e. that anbe T iff ac T and be T;
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aubeTiffacTorbeT;andifaeTand a=beT, be T (where [A]=[B]
is [A-> B]).

Further details of the lattice and truth filter T are more negotiable, but
it is already clear that these semantics show all the following to be logically
true

A>A ,A>»~~A, ~~A->A ArAB->A L A->AVvB

and the following inferences to be truth preserving

A->B,B>C/A->C A->B/~B~>~A
A>B,A>C/A-BAC  A->C,B>C/AvB>C.
A, A>B/B

which is what we would expect of an entailment operator . Hence it is
clear that these details provide the basis of a semantics for entailment.

It may not be clear how these semantics relate to those for the zero degree
case we discussed in 2.3. The connection is this:—’° Suppose we define a
map v from zero degree formulas to {0, 1} as follows: 1€ »(A) iff AeT;
and 0e v(A) iff ~AeT. Then v is a zero degree valuation of the kind
specified in 2.3. To be more precise the semantics as specified make v a
map to Vu {¢}, thus allowing for truth value gaps (see fn.43). The further
condition: a€ T or a* € T makes » a map to V. Thus these semantics subsume
the zero degree semantics and extend them to higher degrees.

An implication based on these semantics is very satisfactory for paracon-
sistent purposes and suffers from none of the problems of the implications
of the previous two approaches: it is relevant; the Curry-paradox generating
A- (A- B)/A- B fails; negation has the right properties (contraposition,
De Morgan, double negation), etc. Moreover, as we shall see subsequently,
naive set theory and semantics based on this kind of relevant logic, though
they may be inconsistent, are provably non-trivial.”' Hence we conclude
that this is the most suitable approach to implication for paraconsistent
purposes, and that, more generally, the relevant approach to paracons1stency
is the most satisfactory one.

Notes

! Berkeley, 1734. Further details of the story can be found in Boyer, 1949.

2See Lakatos, 1970, §3(c2).

3 See e.g., Feyerabend, 1978, IV.

4 See Priest, 1980.

5 See the Introductions to Parts Three and Four of this volume.

¢ For Riggs and Palmer, see 115 N.Y. 506, 22 N.E. 188 (1889) and Dworkin, 1977,
p. 23. On the Proclamation of Emancipation, see Hook, 1962, p. 28. The section
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in wh1ch this point is made contains a discussion of several other mconsmtenmes
in the: American Bill of nghts

’ For many examples of inconsistent sets of beliefs, see R. and V. Routley, 1975.
For elaboration of the computer example, see N.D. Belnap Jr., 1977.

8 See Hegel, 1812, vol. 1, Bk. 2, Ch. 2, §C.

? See chapter 11, pp. 77f. where also further discussion of Hegel and Zeno, may be
found.

19 This example is much further developed in the introduction to Part Four, where
two-other plausible examples of true contradictions are given, e.g. those posed
by certain impossible objects supplied by Meinong’s theory of objects.

1 For further discussion see Priest, 1980.

12 This is one of the many reasons for doubting the adequacy of such positions.

13 Details of these logics, and proofs that they fail to meet paraconsistency require-
ments, are given in chapter 2 of R. Routley et al., 1982. See especially p. 93 and
p. 101. Connexive logics are flawed paraconsistently because they admit the
inference, {A, ~A}F= B. The point, argued syntactically (p.93), may be reargued
semantically, as follows: Since in connexive logics A and ~A cancel one another,
A and ~A are never designated together, and A A ~A is always non-designated.
Thus both {A,~A}FB and {AAr~A}=B hold (on designation-preserving
accounts), and connexive logics are not paraconsistent. Quite apart from this,
connexive logics would be pretty useless for genuine dialectic purposes. For, as
with one of the leads Wittgenstein pursued (discussed in an Introduction to Part
One of the book), contradictions stop things, so undercutting much legitimate
reasoning. The argument that Parry logics and the like (e.g. Zinov’ev’s system)
fail to be paraconsistent, also given syntactically (p. 101), may likewise be reworked
semantically For-on the so far received semantics for these systems, A and ~A
are never designated together, and A A ~A is not designated.

14 See, for instance, the account given of modal logics in RLR, chapter 1, upon which
the argument in the text depends.

13 Jaskowski, 1948.

16 See e.g., da Costa and Dubikajtis, 1968; Kotas and da Costa, 1978.

‘17 See Rescher and Brandom, 1980. A more sophisticated form is to be found in
Schotch and Jennings, 1987. Most of our criticisms apply to them too.

'¥ The idea can be traced back at least to the Jains. It reappears in classical Greek
thought: see chapter I, this vol.

' Why non-recursive semantics are philosophically unsatlsfactory is -explained
below. The truth of the claim is easily seen from the fact that we may have #=4B
and M =,C whilst #=,4A A B but ;A A C. Thus there is no such condition
in the standard (extensional) set-theoretic metalanguage of modal logic.

%0 See e.g. da Costa and Dubikajtis, 1968.

21 The charge is serious since this is one of the prime motivations of paraconsistency,
and one moreover cited by Jaskowski, 1948, p. 143 ff.

22 Rescher ‘and Brandom, 1980, ch. 10. An analogous proposal, which drastically
weakens set theory, was earlier investigated by Gilmore, 1973, in his partial set
theory.

» It remains an important game, which with paraconsistent theory can be tackled
in a thoroughly systematic way for the first time. For the theory to be partitioned
can now be formalized non-trivially.
> Jennings and Schotch’s account avoids this problem.

> Jaskowski, 1948, p. 145.

%A detalled critique of modal approaches to non-modal matters (such as deducibil-
ity, entailment, and paraconsistency) is included in RLR, chapter 1, especially
1.6. This is not to imply that no intensional functors violate adjunction: some
certainly do, but their proper treatment is not a modal one.
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*" He has written a number of papers on the subject. The best place to start is with
da Costa, 1974. The C systems are not the only paraconsistent systems due to da
Costa: he is also jointly responsible with Arruda for the basic P systems; see the
first Introduction to Part One of the book. A rather different positive approach
is that of Pefia 1989.

8 See da Costa and Alves, 1976; Loparié, 1977. -

* In fact it can be shown that under the very weak condition that no non-theorem
has the same sense as any theorem, the slightly stronger da Costa system C, has
‘no non-trivial recursive sense-semantics. For suppose it did. Let S be the set of
senses (subsets of possible worlds or whatever) and let = be the relation which
holds between two formulas if they have the same sense. Then the set of formulas
factored by = would be a non-trivial quotient algebra for C;. But there is no
such algebra for C;, as Mortensen, 1980, shows.

30 da Costa, 1974, p. 498.

31 At least for formal logic. See Hegel, 1830, note on §20, p.32. -

*The da Costa formulation is the equivalent: if »(A>B)=»(A>~B) =1 then
v(A)=0. ,

* See da Costa, 1974, theorem 18.

4 See da Costa, 1974, p. 505.

3 See, in particular, Arruda, 1982. See also Arruda and Batens, 1982.

36 See, e. g., Priest, 1980a, and Routley, 1979.

*" This is the way of Priest, 1979, though we formulate it in the manner of Dunn,
1976. For an alternative approach to the semantics of zero degree relevant logic,
see Routley and Routley, 1972. These and other approaches are elaborated and
discussed in RLR 3.1 and 3.2.

38 See Priest, 1979, Theorem II1.8.

3 All the relations (k) of 2.2 hold. When we come to implication we will see that
those of (1) hold too. ‘

40 Further discussion is to be found in Priest, 1989; and Routley 1978. A detailed
discussion may be found in RLR. '

“! See Anderson & Belnap, 1975, §16.3.

2 Priest, 1989.

“3 As an example of how the semantics may be modified, consider those given in
this section. We merely extend V to include the empty set (as in Dunn, 1976).
All else remains the same. It is easy to check that the main effect of this is to
ensure that # A v ~A and in fact that there are no theorems at all! The consequence
relation is of course still non-trivial. A similar phenomenon occurs when the
semantics are extended to allow for an implication operator. In this case although
the logic now has theorems there are no purely extensional ones, i.e. ones
containing only A, v and ~. The holding or failing of purely extensional theorems
is of little technical relevance to paraconsistency: it can be done either way.
However, for reasons indicated in the text we think that a semantics which does
not validate the laws of excluded middle and non-contradiction opens itself to
the charge that it has not given a semantic account of negation. A discussion of
truth value gaps in the context of Meinong’s theory can be found in EMJB §1.2.

* See Jaskowski, 1948, p. 147.

43 For example see Anderson and Belnap, 1975, Routley and others 1982, Routley
and Norman, 1988.

“® For example, Ackermann’s original Strenge Implikation in 1956, which uses the
disjunctive syllogism in rule form.

“7See. Anderson and Belnap, 1975, p. 32f.

4? See Curry, 1942. Different versions are given in Priest, 1979, and Meyer, Routley
and Dunn, 1979.
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4 See Jaskowski, 1948, p. 150.
50 Jaskowski, 1948, Theorems 1, 3.

51
52
53

See Lopari¢, 1977.
See da Costa, 1974.
See Lopari¢, 1977, p. 838.

>4 Giving some warrant to the label ‘anti-intuitionistic’ sometimes applied to logics

55

56

57

58

59

like the C systems.

See da Costa and Guillaume, 1965.

da Costa, 1974, p. 498.

As before a purely propositional logic is (weakly) relevant iff there is no theorem
of the form A— B, where A and B have no propositional variable in common.
For examples of thlS approach see Epstein, 1979, Copeland, 1980, Epstein and
Szcerba, 1979.

In fact various conditions of relevance (beginning with simple syntactical require-
ments such as variable overlap or inclusion) can be imposed on a wide variety
of logics. The more general procedure enables not merely various non-transitive

- logics, but also certain Parry and depth relevant logics, to be represented as

60

imposing a filter on classical or modal logics.

Non-transitive theories of implication, especially a feature of the Cambridge
tradition go back at least to Strode in the Middle Ages. Typically non-transitivity
resulted by adding further requirements to material or strict implication, often
epistemic requirements concerning ways of coming to know the truth of the
implication. The initially unspecified relation R, of relational implication, is simply
the latest, and in some respects the crudest, of these attempts to filter out the bad
guys, but like the usual sieves fails abysmally in this task, admitting Disjunctive
Syllogism and eliminating Transitivity. (On the respective virtues of these prin-

-ciples, see RLR, chapter 2.) Another subtler way of instituting the filter, with a

61

62

63

64

rather similar outcome, however, is that of Tennant, 1984. The resulting relevant
system satisfies Disjunctive Syllogism, at the expense of faulting transitivity. Thus,
the system is unsuitable for the representation of many inconsistent theories which
are closed under logical consequence. Furthermore the system is open to the
Curry objection.

The case for Transitivity and agamst its rejection is developed at length in RLR,
especially in the initial parts of chapter 2.

Some of the leading exponents of relatedness logics in fact seem oblivious to the
fact that an important role for deductive—and also inductive—logic is reasoning -
from, or in the presence of, inconsistency. Otherwise, presumably, Woods and
Walton would not have begun their text on fallacies with the following unclassified
fallacy: “Unlike deductive or inductive logic, the plausible model of argument
allows us to deal with cases where we are confronted w1th contradictions” (1982,
p. vii).

A relation R for Wthh symmetry is not required is considered by Epstem 1979.
But it remains uninterpreted, other than merely formally, whereas the symmetric
relation can be interpreted in terms of shared topics or subject matter. Naturally
there are non-symmetric relations of interest here, e.g. the transitive relation of
variable inclusion, important for some Parry logics. But these are not, or not
merely, relevance relations. (For a discussion of Parry logics see RLR.)

There is much else wrong with the tack-on idea, as for instance implemented in
relational logic. For example, it validates Ackermann fallacies, such as A-.
(A~ B)~ B, which are also readily counterexampled as implicational and condi-
tional principles. It also fouls up expected and legitimate substitution conditions,
such as inter-replacement of co-entailments, and can interfere with substitution
on variables. :
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% Thus, for example, A is (implicationally) relevant to B iff A is not independent
of B, i.e. iff A is either a superimplicant, subimplicant, equivalent, contrary,
subcontrary or contradictory of B, i.e. iff one of A>B, B>A, A>~B, ~A->B
holds. : .

6 See Anderson and Belnap, 1975.

$7 Even a version of R without the absorption axioms has a version of the Curry
paradox: see Slaney, 1989. Further arguments against the Anderson and Belnap
systems and in favour of depth relevant lOglCS can be found in Priest and Routley,
1982. :

% For the term see Brady, 1982.

_ % This is given in Priest, 1980a. It is similar to the range semantics of Routley and
Routley, 1972, with the restriction to first degree wil lifted, something in effect
carried out—and done explicitly for the dual, content semantics—in EMJB, Appen-
dix, where further details may be found. Moreover these semantics are readily
embedded in more familiar semantics for relevant logics; see e.g. RLR, chapter 3.

70 See Priest, 1980a, Appendix.

"1 See Brady, 1989.

References

- Ackermann, W., 1956, “Begriindung einer strengen Implikation”, Journal of Symbolic
Logic 21, pp. 113-128. .

Anderson, A. R. and Belnap, N. D., 1975, Entailment, Princeton University Press.

Arruda, A. L., 1982, “Remarks on da Costa’s paraconsistent set theories”, in:
Pr(ﬁe{:iings of the Fifth Latin American Symposium on Mathematical Logic, Marcel
Dekke

Arruda, ;A I. and Batens, D., 1982, “Russell’s set versus the universal set in
paraconsistent set theories™, Logique et Analyse 25, pp. 121-136.

Belnap, N. D., Jr., 1977, ““A useful four-valued logic”, in: J. M. Dunn and G. Epstein
(eds), Modern Uses of Multiple-Valued Logic, Dordrecht: Reidel, pp. 5-37.

Berkeley, G., 1734, The Analyst, in: Collected Works, ed. A. C. Fraser, Oxford, 1901,
Vol. III.

Boyer, C., 1949, The sttory of the Calculus and its Conceptual Development, New
York: Dover

Brady, R., 1989, “The Non-triviality of Dialectical Set Theory”, this vol., pp. 437-471.

- 1984, “Depth relevance of some paraconsistent logics”, Studia Logica 43, pp.
63-74.

Copeland, B. J., 1980 “The trouble Anderson and Belnap have with relevance”,
- Philosophical Studtes 37, pp. 325-334.

Curry, H., 1942, “The inconsistency of certain formal logics”, Journal of Symbolic
Logic 7 pp- 115-117.

da Costa, N., 1974, “On the theory of inconsistent formal systems”, Notre Dame
Journal of Formal Logic XV, pp. 497-510.

da Costa, N. and Alves, E. H., 1976, “Une sémantique pour le calcul C,”, Comptes
Rendus Hebdomadalres des Seances de I’ Acad. des Sciences, Paris 283A pp 729-
731.

da Costa, N. and Dubikajtis, L., 1968, “Sur la logique discoursive de JaSkowski”.
Bulletin of the Polish Academy of Sciences XVI, pp. 551-557.

da Costa, N. and Gulllaume M., 1965, “Negatlons composées et la loi de Pelrce
dans les systemes C,’ Portugaha Mathematzca 24, Fasc 4, pp. 201-210.

184



Dunn, J. M., 1976, “Intuitive semantics for first-degree entailments and ‘coupled
trees’”, Philosophical Studies 29, pp. 149-68.
Dworkin, R., 1977, Taking Rights Seriously, London: Duckworth.
Epstein, R., 1979 “Relatedness and implication”, Philosophical Studies 36, pp. 137-
173.
Epstein, R. and Szcerba, L.; 1979, “Relatedness and interpretability”, Philosophical
Studies 36, pp. 225-31.
Feyerabend, P., 1978, “In Defence of Aristotle” in: Progress and Rationality in
Science, eds. Radnitzky, G., and Anderson, G., Dordrecht: Reidel.
Gilmore, P. C., 1973, “The consistency of partial set theory without extensionality”,
_ LBM. Research Report, RC 1973, Dec. 21st, 1967.
Hegel, G. W. F., 1812, Science of Logic. English translation by A. V. Miller, London:
Allen and Unwin, 1969.
- 1830, Logic: being part one of the Encyclopedia of the Philosophical Sciences. Page
references are to the translation by W. Wallace, Oxford University Press, 1975.
Hook, S., 1962, The Paradoxes of Freedom, University of California Press.
Jaskowski, S., 1969, “Propositional calculus for contradictory systems” Studia
Logica XXIV pp- 143-157.
Kotas, J. and da Costa, N., 1978, “On the problem of Jaskowski and the loglcs of
Lukasiewicz”, Math. Logzc Proc. of the 1st Brazilian Conf. eds. A. 1. Arruda et
al., New York: Marcel Dekker.
Lakatos, I., 1970, “Falsification and the methodology of scientific research pro-
grams”’, Collected Works, vol. 1., Cambridge University Press, 1978.
"~ Loparié, A., 1977, “Une étude sémantique de quelques calculs propositionnels”,
Comptes Rendus Acad. des Sciences, Paris 284A, pp. 835-838.

Meyer, R. K., Routley, R. and Dunn, J. M., 1979, “Curry’s paradox”, Analysis 39,
pp- 124-128.

Mortensen, C., 1980, ‘“Every quotient algebra for C, is trivial”, Notre Dame Journal
of Formal Logic XX1, pp. 694-700.

Pefa, L., 1989, “ Verum et Ens Convertuntur”, this vol., pp. 563-612.

Priest, G 1979, “Logic of paradox”, Journal of Phllosophzcal Logic 8, pp- 219- 241

- 1980, “A Dialectical Account of the Growth of Science”, unpubhshed typescript.

- 1980a, “Sense, entailment and modus ponens”, Journal of Philosophical Logic 9,.

pp. 415-435.

- 1989, “Reductio ad Absurdum et Modus Tollendo Ponens”, this vol. pp. 613-626.

Priest, G. and Routley, R., 1982, ‘Lessons from Pseudo-Scotus’, Philosophical Studies
42, pp. 189-199.

Rescher, N. and Brandom, R., 1980, The Logic of Inconsistency, Oxford: Blackwell.

Routley, R., 1978, “The chonce of logical foundation: non classical choices and the
ultraloglcal choicé”, in: Studia Logica 39, 1980, pp. 77-88.

- 1979, “Dialectical logic, semantics and metamathematics”, Erkenntnis 14, pp. 301-
331.

- 1980, Exploring Meinong’s Jungle and Beyond, Canberra: Australian National
University. Also called EMJB.

Routley, R. and others, 1982, Relevant Logics and their Rivals, Atascadero, CA:
Ridgeview. Also called RLR.

‘Routley, R. and Norman, J., eds., 1988, Directions in Relevant Logics, Nijhofl.

Routley, R. and Routley, V., 1972, “The semantics of first degree entailment”, Noils
6, pp. 335-359. '

- 1975, “The role of inconsistent and incomplete theories in the logic of belief”,
Communication and Cognition 8, pp. 185-235.

Schotch, P. and Jennings, R., 1989, “On Detonating”, this vol., pp. 306-327.

Slaney, J., 1989, “RWX is not Curry paraconsistent”, this vol., pp. 472-480.

185



Tennant, N., 1984, “Perfect validity, entailment and paraconsistency”, Studia Logica

43, pp. 181-200. 7
Woods, J. and Walton, D., 1982, Argument, the Logic of Fallacies, New York:

McGraw-Hill, Ryerson.



